10 research outputs found

    PROACTIVE BIOMETRIC-ENABLED FORENSIC IMPRINTING SYSTEM

    Get PDF
    Insider threats are a significant security issue. The last decade has witnessed countless instances of data loss and exposure in which leaked data have become publicly available and easily accessible. Losing or disclosing sensitive data or confidential information may cause substantial financial and reputational damage to a company. Therefore, preventing or responding to such incidents has become a challenging task. Whilst more recent research has focused explicitly on the problem of insider misuse, it has tended to concentrate on the information itself—either through its protection or approaches to detecting leakage. Although digital forensics has become a de facto standard in the investigation of criminal activities, a fundamental problem is not being able to associate a specific person with particular electronic evidence, especially when stolen credentials and the Trojan defence are two commonly cited arguments. Thus, it is apparent that there is an urgent requirement to develop a more innovative and robust technique that can more inextricably link the use of information (e.g., images and documents) to the users who access and use them. Therefore, this research project investigates the role that transparent and multimodal biometrics could play in providing this link by leveraging individuals’ biometric information for the attribution of insider misuse identification. This thesis examines the existing literature in the domain of data loss prevention, detection, and proactive digital forensics, which includes traceability techniques. The aim is to develop the current state of the art, having identified a gap in the literature, which this research has attempted to investigate and provide a possible solution. Although most of the existing methods and tools used by investigators to conduct examinations of digital crime help significantly in collecting, analysing and presenting digital evidence, essential to this process is that investigators establish a link between the notable/stolen digital object and the identity of the individual who used it; as opposed to merely using an electronic record or a log that indicates that the user interacted with the object in question (evidence). Therefore, the proposed approach in this study seeks to provide a novel technique that enables capturing individual’s biometric identifiers/signals (e.g. face or keystroke dynamics) and embedding them into the digital objects users are interacting with. This is achieved by developing two modes—a centralised or decentralised manner. The centralised approach stores the mapped information alongside digital object identifiers in a centralised storage repository; the decentralised approach seeks to overcome the need for centralised storage by embedding all the necessary information within the digital object itself. Moreover, no explicit biometric information is stored, as only the correlation that points to those locations within the imprinted object is preserved. Comprehensive experiments conducted to assess the proposed approach show that it is highly possible to establish this correlation even when the original version of the examined object has undergone significant modification. In many scenarios, such as changing or removing part of an image or document, including words and sentences, it was possible to extract and reconstruct the correlated biometric information from a modified object with a high success rate. A reconstruction of the feature vector from unmodified images was possible using the generated imprints with 100% accuracy. This was achieved easily by reversing the imprinting processes. Under a modification attack, in which the imprinted object is manipulated, at least one imprinted feature vector was successfully retrieved from an average of 97 out of 100 images, even when the modification percentage was as high as 80%. For the decentralised approach, the initial experimental results showed that it was possible to retrieve the embedded biometric signals successfully, even when the file (i.e., image) had had 75% of its original status modified. The research has proposed and validated a number of approaches to the embedding of biometric data within digital objects to enable successful user attribution of information leakage attacks.Embassy of Saudi Arabia in Londo

    A novel behaviour profiling approach to continuous authentication for mobile applications

    Get PDF
    The growth in smartphone usage has led to increased user concerns regarding privacy and security. Smartphones contain sensitive information, such as personal data, images, and emails, and can be used to perform various types of activity, such as transferring money via mobile Internet banking, making calls and sending emails. As a consequence, concerns regarding smartphone security have been expressed and there is a need to devise new solutions to enhance the security of mobile applications, especially after initial access to a mobile device. This paper presents a novel behavioural profiling approach to user identity verification as part of mobile application security. A study involving data collected from 76 users over a 1-month period was conducted, generating over 3 million actions based on users' interactions with their smartphone. The study examines a novel user interaction approach based on supervised machine learning algorithms, thereby enabling a more reliable identity verification method. The experimental results show that users could be distinguished via their behavioural profiling upon each action within the application, with an average equal error rate of 26.98% and the gradient boosting classifier results prove quite compelling. Based on these findings, this approach is able to provide robust, continuous and transparent authentication

    Physical activity recognition by utilising smartphone sensor signals

    Get PDF
    Human physical motion activity identification has many potential applications in various fields, such as medical diagnosis, military sensing, sports analysis, and human-computer security interaction. With the recent advances in smartphones and wearable technologies, it has become common for such devices to have embedded motion sensors that are able to sense even small body movements. This study collected human activity data from 60 participants across two different days for a total of six activities recorded by gyroscope and accelerometer sensors in a modern smartphone. The paper investigates to what extent different activities can be identified by utilising machine learning algorithms using approaches such as majority algorithmic voting. More analyses are also provided that reveal which time and frequency domain-based features were best able to identify individuals' motion activity types. Overall, the proposed approach achieved a classification accuracy of 98% in identifying four different activities: walking, walking upstairs, walking downstairs, and sitting (on a chair) while the subject is calm and doing a typical desk-based activity

    Using Burstiness for Network Applications Classification.

    Get PDF
    Network traffic classification is a vital task for service operators, network engineers, and security specialists to manage network traffic, design networks, and detect threats. Identifying the type/name of applications that generate traffic is a challenging task as encrypting traffic becomes the norm for Internet communication. Therefore, relying on conventional techniques such as deep packet inspection (DPI) or port numbers is not efficient anymore. This paper proposes a novel flow statistical-based set of features that may be used for classifying applications by leveraging machine learning algorithms to yield high accuracy in identifying the type of applications that generate the traffic. The proposed features compute different timings between packets and flows. This work utilises tcptrace to extract features based on traffic burstiness and periods of inactivity (idle time) for the analysed traffic, followed by the C5.0 algorithm for determining the applications that generated it. The evaluation tests performed on a set of real, uncontrolled traffic, indicated that the method has an accuracy of 79% in identifying the correct network application.</jats:p

    User Profiling Based on Application-Level Using Network Metadata.

    Get PDF
    There is an increasing interest to identify users and behaviour profiling from network traffic metadata for traffic engineering and security monitoring. Network security administrators and internet service providers need to create the user behaviour traffic profile to make an informed decision about policing, traffic management, and investigate the different network security perspectives. Additionally, the analysis of network traffic metadata and extraction of feature sets to understand trends in application usage can be significant in terms of identifying and profiling the user by representing the user's activity. However, user identification and behaviour profiling in real-time network management remains a challenge, as the behaviour and underline interaction of network applications are permanently changing. In parallel, user behaviour is also changing and adapting, as the online interaction environment changes. Also, the challenge is how to adequately describe the user activity among generic network traffic in terms of identifying the user and his changing behaviour over time. In this paper, we propose a novel mechanism for user identification and behaviour profiling and analysing individual usage per application. The research considered the application-level flow sessions identified based on Domain Name System filtering criteria and timing resolution bins (24-hour timing bins) leading to an extended set of features. Validation of the module was conducted by collecting Net Flow records for a 60 days from 23 users. A gradient boosting supervised machine learning algorithm was leveraged for modelling user identification based upon the selected features. The proposed method yields an accuracy for identifying a user based on the proposed features up to 74

    Fat mass prediction equations and reference ranges for Saudi Arabian Children aged 8–12 years using machine technique method

    Get PDF
    Background The number of children with obesity has increased in Saudi Arabia, which is a significant public health concern. Early diagnosis of childhood obesity and screening of the prevalence is needed using a simple in situ method. This study aims to generate statistical equations to predict body fat percentage (BF%) for Saudi children by employing machine learning technology and to establish gender and age-specific body fat reference range. Methods Data was combined from two cross-sectional studies conducted in Saudi Arabia for 1,292 boys and girls aged 8–12 years. Body fat was measured in both studies using bio-electrical impedance analysis devices. Height and weight were measured and body mass index was calculated and classified according to CDC 2,000 charts. A total of 603 girls and 374 boys were randomly selected for the learning phase, and 153 girls and 93 boys were employed in the validation set. Analyses of different machine learning methods showed that an accurate, sensitive model could be created. Two regression models were trained and fitted with the construction samples and validated. Gradient boosting algorithm was employed to achieve a better estimation and produce the equations, then the root means squared error (RMSE) equation was performed to decrease the error. Body fat reference ranges were derived for children aged 8–12 years. Results For the gradient boosting models, the predicted fat percentage values were more aligned with the true value than those in regression models. Gradient boosting achieved better performance than the regression equation as it combined multiple simple models into a single composite model to take advantage of that weak classifier. The developed predictive model archived RMSE of 3.12 for girls and 2.48 boys. BF% and Fat mass index charts were presented in which cut-offs for 5th, 75th and 95th centiles are used to define ‘under-fat’, ‘normal’, ‘overfat’ and ‘subject with obesity’. Conclusion Machine learning models could represent a significant advancement for investigators studying adiposity-related issues in children. These models and newly developed centile charts could be useful tools for the estimation and classification of BF%. </jats:sec

    Leveraging Biometrics for Insider Misuse Identification

    No full text

    CellsDeepNet: A Novel Deep Learning-Based Web Application for the Automated Morphometric Analysis of Corneal Endothelial Cells

    No full text
    The quantification of corneal endothelial cell (CEC) morphology using manual and semi-automatic software enables an objective assessment of corneal endothelial pathology. However, the procedure is tedious, subjective, and not widely applied in clinical practice. We have developed the CellsDeepNet system to automatically segment and analyse the CEC morphology. The CellsDeepNet system uses Contrast-Limited Adaptive Histogram Equalization (CLAHE) to improve the contrast of the CEC images and reduce the effects of non-uniform image illumination, 2D Double-Density Dual-Tree Complex Wavelet Transform (2DDD-TCWT) to reduce noise, Butterworth Bandpass filter to enhance the CEC edges, and moving average filter to adjust for brightness level. An improved version of U-Net was used to detect the boundaries of the CECs, regardless of the CEC size. CEC morphology was measured as mean cell density (MCD, cell/mm2), mean cell area (MCA, μm2), mean cell perimeter (MCP, μm), polymegathism (coefficient of CEC size variation), and pleomorphism (percentage of hexagonality coefficient). The CellsDeepNet system correlated highly significantly with the manual estimations for MCD (r = 0.94), MCA (r = 0.99), MCP (r = 0.99), polymegathism (r = 0.92), and pleomorphism (r = 0.86), with p < 0.0001 for all the extracted clinical features. The Bland–Altman plots showed excellent agreement. The percentage difference between the manual and automated estimations was superior for the CellsDeepNet system compared to the CEAS system and other state-of-the-art CEC segmentation systems on three large and challenging corneal endothelium image datasets captured using two different ophthalmic devices

    A Generalized Laser Simulator Algorithm for Mobile Robot Path Planning with Obstacle Avoidance

    No full text
    This paper aims to develop a new mobile robot path planning algorithm, called generalized laser simulator (GLS), for navigating autonomously mobile robots in the presence of static and dynamic obstacles. This algorithm enables a mobile robot to identify a feasible path while finding the target and avoiding obstacles while moving in complex regions. An optimal path between the start and target point is found by forming a wave of points in all directions towards the target position considering target minimum and border maximum distance principles. The algorithm will select the minimum path from the candidate points to target while avoiding obstacles. The obstacle borders are regarded as the environment&rsquo;s borders for static obstacle avoidance. However, once dynamic obstacles appear in front of the GLS waves, the system detects them as new dynamic obstacle borders. Several experiments were carried out to validate the effectiveness and practicality of the GLS algorithm, including path-planning experiments in the presence of obstacles in a complex dynamic environment. The findings indicate that the robot could successfully find the correct path while avoiding obstacles. The proposed method is compared to other popular methods in terms of speed and path length in both real and simulated environments. According to the results, the GLS algorithm outperformed the original laser simulator (LS) method in path and success rate. With application of the all-direction border scan, it outperforms the A-star (A*) and PRM algorithms and provides safer and shorter paths. Furthermore, the path planning approach was validated for local planning in simulation and real-world tests, in which the proposed method produced the best path compared to the original LS algorithm
    corecore